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Abstract
We study the strain-induced morphological instability at the submonolayer
coverage stage of heteroepitaxial growth on a vicinal substrate with regularly
spaced steps. We study the regime in which diffusion along the film edge is
the dominant mechanism of transport of matter. We perform a linear stability
analysis and determine for which conditions of coverage a flat front is unstable
and for which conditions it is stable. We discuss the effect of step energy. Our
results predict that when the thin film covers less than one-half of the terraces the
flat front is unstable. For very small coverage, the front will spontaneously break
into a regular array of islands. We obtain expressions for the aspect ratio, the
size and the spacing of the islands forming this array. This opens the possibility
of inducing the spontaneous formation of an array of two-dimensional quantum
structures with the desired size and spacing by controlling the cutting angle of
the vicinal surface and the fraction of the surface covered by the material.

Two-dimensional (2D) structures at the very early stages of epitaxial growth are crucial
to understand the fundamental mechanisms of film growth. Instabilities, that were once
considered a problem in growing smooth films, are now of fundamental importance.
Technologically, understanding the spontaneous ordering of nano-structures opens the
possibility of tailoring arrays of quantum wires and quantum dots which might form the
basis of novel electronic and optoelectronic devices. Nowadays the whole field of thin-film
deposition and spontaneous ordering of nanostructures on crystal surfaces has become a subject
of intense experimental and theoretical study [1–3]. As Li et al [4] pointed out, on a vicinal
substrate one may expect approximate 2D analogues of all the 3D equilibrium growth modes.
For homoepitaxy on a vicinal substrate one would expect ideal step flow growth, i.e. stripes
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of the deposited material advancing with a smooth front [5]. In heteroepitaxy, one would
expect the formation of a stressed domain structure. Strain-induced self-organized formation
of 3D nano-structures has been studied in the last few years [6]. In a recent letter Li et al [4]
demonstrate by both theory and experiment that a similar approach for nanofabrication can be
applied to the growth of strained 2D layers. By comparing the energy of an array of stripes with
the energy of an array of rectangular islands aligned along the steps they showed that stripes
of width w = θW growing on terraces of width W that have a smooth front are energetically
unfavourable when the coverage θ is small. To do this, they have taken into account the elastic
energy as well as the step energy. They have also shown that for large coverage an array of
rectangular islands with less energy than an array of stripes does not exist.

The total free energy approach determines which shape is energetically favourable.
However, it does not say anything about the dynamical stability of the considered shape.
Moreover, there might be different configurations, some stable some unstable, with exactly
the same total energy. Therefore the total energy criteria would not discriminate among
them. On the other hand, a stability analysis that describes the relaxation of a structure
towards equilibrium could tell us whether a structure is or is not dynamically stable. It gives
information on how a perturbation grows or decays, the wavelength that dominates the pattern
and the dynamics towards the equilibrium or steady state. A linear stability analysis is, of
course, not as general as a full stability analysis, since it is only valid at very short times, but
it is able to predict whether a structure is stable or not, and in the case when it is unstable, it
gives the wavelength that dominates the pattern at onset. Therefore, a linear stability analysis
should be considered as complementary to a total energy analysis. The former approach is
used in this letter.

In this letter we present a study of the strain-induced morphological instability at the
submonolayer coverage stage of heteroepitaxial growth on a vicinal substrate with regularly
spaced steps. The growth process could be roughly described as follows. Particles from the
external flux fall into the terraces, diffuse rapidly on them and are incorporated into the growing
film. We consider the case of very slow external flux in such a way that at any time the film
could be considered to be in mechanical equilibrium and to have a fixed number of particles. It
should be clear that none of the experimental growing conditions will meet these requirements.
It might sound contradictory to talk about growth and to analyse a film with a given number
of particles, but it is a question of timescales. For fast flows, an analysis such as that in [7]
should be considered. Moreover, to freeze the growth process in order to study instabilities
is a regular assumption in the area of pattern formation [8]. The probability of particles
separating from the film, which implies lowering the coordination number, is neglected in
the present analysis. Also, since diffusion in terraces is very fast, its characteristic time may
be considered negligible with respect to the characteristic time of diffusion along the step
edges. We therefore consider that diffusion along the step edges is the dominant mechanism
of transport of matter once mechanical equilibrium has been reached. We perform a linear
stability analysis and determine for which conditions of coverage a flat front is unstable and
for which conditions it is stable. We obtain that the flat front is unstable for any coverage
below θ = 0.5 whereas it is stable for any coverage above θ = 0.5. We find that elasticity
by itself gives no wavelength selection. We then consider the step energy (or line tension)
which, due to its stabilizing effect, gives rise to wavelength selection when the flat front is
unstable. For very small coverage, the instability will cause the breaking of the stripe into an
array of islands aligned along the steps. For systems in which the linear regime is observable,
the fastest-growing wavelength of our analysis will determine the size and spacing of such an
array. Our results give the explicit dependence of the islands’ size and spacing on the terrace
width and the coverage. Since these are parameters that can be controlled experimentally, our
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Figure 1. Step flow on a vicinal surface.

y

x

Figure 2. Schematic representation of the force distribution along the array of stripes. The vicinal
surface is viewed from the top.

results offer a way to find out whether the linear regime determines the island structure for a
given system. When it turns out to be such, our results give a way of tailoring the spontaneous
array of islands with the desired size and spacing.

We consider an array of straight stripes growing on a vicinal surface as shown in figure 1.
The lattice mismatch between the growing material and the substrate introduces an elastic-
force monopole along the stripe periphery proportional to the misfit strain and the height of
the step that forms the edges of the stripe [3]. Each stripe covers a fraction θ of the terrace
widthW . For one of them4 we set an arbitrarily perturbed contour which can be expanded in
plane waves. It turns out that for a linear analysis all modes decouple and it is enough to study
one mode, so we study a perturbation of the form

y(x, t) = y0 + δ(t) cos(kx) (1)

where δ(t) is the time-dependent amplitude of the Fourier mode with wavenumber k and y0 is
the average position of the perturbed growing front. In the linear regime the growth or decay
of a perturbation is exponential δ(t) = δ0 expωt .

Since our system is in mechanical equilibrium we use elasticity of continuum media. This
approach has been used in [4]. A distribution of force per unit length �F = F0n̂ acts all along
the periphery of the array of stripes shown in figure 2. The displacement field �u(x) over the
perturbed stripe edge due to such a force distribution can be computed as [9]

�u(x) = 1 + σ

πE
F0

∫ [
(1 − σ) n̂

r
+ σ

�r
r3
n̂ · �r

]
dS (2)

4 In principle, one should perturb all fronts, but in order to obtain analytical results we treat the simpler problem of
perturbing a single front. This is also because perturbing several fronts at a time involves other problems, for instance
the question of whether the perturbations on different fronts are in phase or out of phase.
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where �r is the vector difference between the point at which the force acts and the point at which
the displacement is evaluated. The integration is performed along the edges of all the stripes,
not only the perturbed one. The outward normal to a stripe’s edge is given by n̂. E and σ are
the Young’s modulus and Poisson’s ratio of the substrate respectively. A cut-off length a of
the order of the lattice constant is introduced in the integration. The local free energy per unit
length at a point over the perturbed stripe edge is given by

µ(x) = − 1
2

�F(x) · �u(x). (3)

The mechanism of transport of matter that we consider is the diffusion of particles along the
perturbed stripe edge. A gradient in the local free energy along the edge induces a local force.
Particles move in the direction that minimizes this gradient. Assuming linear response we
have a flux along the stripe periphery proportional to the gradient in the free energy along the
edge, i.e. Js ∝ −∂µ/∂S. When Js is constant, matter moves along the stripe periphery without
a net effect on the stripe shape. On the other hand, when at a point on the stripe edge there
is a gradient of Js along the interface, matter accumulates, giving a contribution to the local
normal velocity proportional to

vn ∝ −∂Js

∂S
. (4)

The normal velocity at any point on the stripe edge is then given by

vn = D ∂2

∂S2
µ(x) (5)

where µ(x) is the local free energy, D is a diffusion coefficient in which we have grouped all
proportionality constants and ∂/∂S means differentiation along the arc length.

The perturbation given by (1) is a solution of the interface dynamics only if ω and k are
related by a dispersion relationω(k). If there are values of k for whichω is positive, an arbitrary
perturbation containing such values of k is amplified and the straight stripe is unstable. If ω is
negative for all k, an arbitrary perturbation is damped and the straight stripe is stable [8].

In the linear approximation the outward normal to the perturbed stripe is given by
n̂(x) = δk sin(kx)î + ĵ and the differential arc length is given by dS = x.

We obtain the following local free energy:

µe(x) = −2Es

{
(1 − σ) ln

[
W

2πa
sen(πθ)

]
+ (1 − σ)πδ

W
cot(πθ) cos(kx)− σ

}
(6)

where Es = 1+σ
2πEF

2
0 is the unit strain energy introduced in [10].

We compute vn from both our equation of motion (5) and the time derivative of y(x),
equate the two results and obtain an expression for the growth rate of the perturbation ω. This
is given by

ωelastic = 2Es(1 − σ)Dπ
W

cot(πθ)k2. (7)

Figure 3 shows the plot for this dispersion relation. As is clear from equation (7), we obtain
that for any coverage below θ = 0.5, ω is positive, all modes grow and the flat front of the
growing stripe is unstable. Moreover the smaller the wavelength of the perturbation, the faster
the perturbation grows. Also, for any coverage above θ = 0.5 ω is negative, meaning that all
modes decay and that the straight stripe is stable. For a given mode, the larger the coverage,
the faster the perturbation decays. The coverage θ = 0.5 has neutral stability and gives the
critical coverage. Our results agree with those obtained via the total energy criteria in the sense
that stripes of width w = θW having a smooth front are unstable when the coverage is small.
So far, our stability analysis predicts no wavelength selection. That is, a finite mode k that
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Figure 3. Elastic effect on the dispersion relation for the growth and decay of a perturbation.
The upper curves are for coverages θ < 0.5. For these coverages all modes are unstable and any
perturbation to the straight stripe will grow. The lower curves are for coverages θ > 0.5. For these
coverages the straight stripe is stable. The curve ω = 0 denotes neutral stability and corresponds
to θ = 0.5, which is the critical coverage.
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Figure 4. Dispersion relation showing the stabilizing effect of step energy for θ < 0.5. The
fastest-growing mode is given by k∗.

grows faster than the others and determines the wavelength of the pattern does not exist when
considering solely elastic effects.

In order to have a wavelength selected, it is necessary to account for the effect of the step
energy. The local free energy per particle at the step is given by [2]

µstep(x) = a2
pγ (x)κ(x) (8)

where κ(x) is the local curvature of the perturbed stripe edge, γ (x) is a line tension, which in
general is anisotropic, and a2

p is the area occupied by an atom. Here we take an isotropic γ to
illustrate the overall effect of a line tension. The contribution ωstep to the dispersion relation is

ωstep = −D′γ k4. (9)

The total dispersion relation is then ω = ωelastic − D′γ k4. Note that D′ is again a diffusion
coefficient. It has different units from D because the local free energy at (8) is an energy per
particle, while the local elastic energy (6) is an energy per unit length. The minus sign indicates
that the line tension has a stabilizing effect. For θ > 0.5 the straight stripes become even more
stable. This means that any perturbation will decay faster due to the step energy effect. Figure 4
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illustrates the effect of the line tension on the dispersion relation for θ < 0.5. For the figure
we have taken arbitrary values for the parameters involved. As usual, the step energy is
unable to stabilize long-wavelength modes but stabilizes short-wavelength ones. Therefore
the dispersion relation has a maximum at a mode that we call k∗. This is the fastest-growing
mode and determines the wavelength of the pattern at short times. It is given by

k∗ =
(
(1 − σ)EsDπ cot(πθ)

WγD′

)1/2

. (10)

For small coverages, the growing amplitude of the perturbation will soon reach the interstep
(defined in figure 1) and the undulated stripe will break into domains separated by a distance
d = 2π/k∗ given by

d = 2W 1/2

(
γD′π

(1 − σ)EsD cot(πθ)

)1/2

. (11)

Each of the domains will have an area A = θWd , given by

A = 2θW 3/2

(
γD′π

(1 − σ)EsD cot(πθ)

)1/2

(12)

and an aspect ratio c = θW/d given by

c = 1

2
θW 1/2

(
(1 − σ)EsD cot(πθ)

γD′π

)1/2

. (13)

These expressions provide a way to control the domain’s size and spacing. Experimentally
it is possible to control the terrace width, through the cutting angle of the vicinal surface in
which the material grows, and the coverage. Our results predict that for small coverages the
separation between islands goes as W 1/2, the area of the islands as W 3/2 and the aspect ratio
asW 1/2.

For larger coverages the undulated stripe could take much longer to break into separate
domains (if it ever breaks) and the linear stability analysis results may no longer be valid since
they hold only at short times. Nevertheless our results for the most unstable wavelength should
be valid at the onset of the instability. To test this experimentally it would be convenient to
start with high coverages for which the straight stripes are stable and allow for evaporation.

Our results agree with those obtained via the energy criteria [4] in the sense that stripes
of width w = θW having a smooth front are unstable when the coverage is small. However,
the two approaches present some differences. For instance, using a total energy criterion the
islands’ size and spacing can be predicted even in the absence of step energy. According to
our results this does not happen. Also in our approach the separation between islands tends to
zero for very small coverages while in the total energy criterion the separation between islands
diverges at small coverages. However, direct comparison of the results of the two approaches
should be made with care, since they address different questions in different regimes. The total
free energy approach determines which shape is energetically favourable. However, it does
not say anything about the dynamical stability of the considered shape. Note that to linear
order in δ all the contours considered in this paper have exactly the same total energy for given
coverage and step energy. Hence, a total energy criterion would have predicted that they are
all equally likely.

We have studied the linear stability of a planar front at the early stages of heteroepitaxial
growth on a vicinal surface. We have determined whether a small perturbation around the
planar front grows or decays at the early times of the dynamics. Our approach cannot say
anything about the late-time regime and nonlinear effects or about situations in which several
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layers of material are deposited, since for such situations there is a third dimension in which
matter could rearrange. The linear stability analysis cannot predict the shape of the pattern
at late times. However the fastest-growing mode of our analysis determines the wavelength
of the pattern and therefore, for small coverages, the size, aspect ratio and separation of an
array of islands aligned along the steps. This opens the possibility of inducing the spontaneous
formation of an array of quantum structures with the desired size and spacing by controlling
the cutting angle of the vicinal surface and the fraction of the surface covered by the material.

We thank Hong Guo for having suggested we look into this problem. This work was partially
supported by Conacyt under grant 33920-E and fellowship 145167 and also by the TMR
network Pattern, Noise and Chaos, ERBFMRXCT960085. We thank FENOMEC for having
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